Error Estimates for Least Squares Approximation by Polynomials

Helmut Brass
Institut für Angewandte Mathematik, Technische Universität Braunschweig, D-3300 Braunschweig, West Germany

Communicated by G. Meinardus

Received February 7, 1983

1. The Result

Let q_{0}, q_{1}, \ldots, be the normalized orthogonal polynomials associated with the distribution $d \alpha$ on the fundamental interval $[-1,1]$. The weighted least squares approximation to f is given by

$$
\begin{equation*}
H[f]=\sum_{t=0}^{n} q_{\nu} \int_{-1}^{1} f(t) q_{v}(t) d \alpha(t) \tag{1}
\end{equation*}
$$

The purpose of this note is to estimate the error $\|f-H[f]\|$, where $\|\cdot\|$ means the sup-norm on $[-1,1]$. We have the

Theorem. Let da be a distribution with the following properties:
(i) iff is any continuous function, then

$$
\int_{-1}^{1} f(x) d \alpha(x)=\int_{-1}^{1} f(-x) d \alpha(x)
$$

(ii) $\quad\left\|q_{v}\right\|=q_{v}(1), v=0,1, \ldots, n+1$.

If the derivative $f^{(n+1)}$ exists, then

$$
\begin{equation*}
\|f-H[f]\| \leqslant \frac{\left\|q_{n+1}\right\|}{\left\|q_{n+1}^{(n+1)}\right\|}\left\|f^{(n+1)}\right\| . \tag{2}
\end{equation*}
$$

Remark. The example $f=q_{n+1}$ shows, that the error estimation (2) is unimprovable.

Special Case 1. $d \alpha(x)=\left(1-x^{2}\right)^{3} d x, \beta \geqslant-\frac{1}{2}$. This is the expansion in terms of ultraspherical polynomials. The hypotheses of the theorem are fulfilled (Szegö [7, p. 166, p. 80|); Equation (2) is known in this case [1].

Special Case 2. Let m be a natural number with $m \geqslant n+2$. Let $d \alpha$ be given by

$$
\int_{-1}^{1} f(x) d \alpha(x) \equiv \frac{2}{m} \sum_{\kappa-1}^{m} f\left(\xi_{\kappa}\right), \quad \xi_{\kappa}=-\cos \frac{2 \kappa-1}{2 m} \pi
$$

In this case is $q_{0}=2^{-1 / 2} T_{0}, q_{r}=T_{1}(v=1, \ldots, n+1)($ Rivlin $\mid 6$, p. 49|). where T_{1} denotes the Chebyshev polynomial $T_{r}(x)=\cos v \operatorname{arc} \cos x$. The theorem is applicable and leads to

$$
\begin{equation*}
\|H|f|-f\| \leqslant \frac{\left\|f^{(n-1)}\right\|}{2^{n}(n+1)!} \tag{3}
\end{equation*}
$$

This bound may be interesting in view of the following well-known result (Meinardus [4, p. 78]). If p denotes the polynomial of best approximation with respect to the sup-norm, then

$$
\|p-f\| \leqslant \frac{\left\|f^{(n+1)}\right\|}{2^{n}(n+1)!}
$$

is unimprovable.
The operator H makes sense for $m=n+1$, too. Then it coincides with the interpolation operator with nodes $\xi_{\kappa}(\kappa=1, \ldots, m)$. Therefore, $H[f \mid$ is in the general case $m>n+1$ a truncated interpolation polynomial.

Special Case 3. Let m be a natural number with $m \geqslant n+1$. Let $d \alpha$ be given by

$$
\int_{-1}^{1} f(x) d \alpha(x) \equiv \frac{1}{m} \left\lvert\, f(-1)+2 \sum_{\kappa=1}^{m-1} f\left(-\cos \frac{\kappa \pi}{m}\right)+f(1)^{\prime}\right.
$$

In this case we have $q_{0}=2^{1 / 2} T_{0}, q_{r}=T_{r}(v=1, \ldots, m-1), q_{m}=2^{{ }^{12}-2} T_{m}$ (Rivlin $[6$, p. 50$]$). Therefore, the bound (3) holds for all $m \geqslant n+1$. This generalizes the result of Phillips and Taylor $|5|$, who dealt with $m=n+1$. In view of results of Lewanowicz [3] the choice $m=2 n+1$ leads to a further approximation method of special interest.

2. The Proof

We require the lemma:

Lemma. If $|\alpha| \leqslant A,|\beta| \leqslant B$ are real numbers, and x, y are elements of a normed space with norm $\|\cdot\|^{*}$, then

$$
\|\alpha x+\beta y\|^{*} \leqslant \max \left\{\|A x+B y\|^{*},\|A x-B y\|^{*}\right\}
$$

holds.

Proof. It is easily seen that $\zeta(\beta):=\|\alpha x+\beta y\|^{*}$ is a convex function. Therefore ζ attains its maximum on the boundary

$$
\|\alpha x+\beta y\|^{*} \leqslant \max \left\{\|\alpha x+B y\|^{*},\|\alpha x-B y\|^{*}\right\}
$$

A similar argument applied to $\psi(\alpha):=\|\alpha x \pm B y\|^{*}$ will establish the lemma.
Proof of the Theorem. Let δ_{n} denote the leading coefficient of q_{n}. According to the Christoffel-Darboux formula we have

$$
\begin{aligned}
R[f] & :=f(x)-H[f](x)=H[f(x)-f](x) \\
& =\int_{-1}^{1}[f(x)-f(t)] \sum_{v=0}^{n} q_{v}(x) q_{v}(t) d \alpha(t) \\
& =\frac{\delta_{n}}{\delta_{n+1}} \int_{-1}^{1} \frac{f(x)-f(t)}{x-t}\left[q_{n+1}(x) q_{n}(t)-q_{n}(x) q_{n+1}(t)\right] d \alpha(t)
\end{aligned}
$$

if x is fixed. We define a function g by

$$
g(t)=\frac{f(x)-f(t)}{x-t}
$$

g has n derivatives, and the inequality

$$
\left\|g^{(s)}\right\| \leqslant \frac{\left\|f^{(s+1)}\right\|}{s+1}, \quad s=0,1, \ldots, n
$$

holds [2]. Introducing an operator norm for functionals Q by

$$
\|Q\|_{s}:=\sup _{\|f(s)\| \leq 1}\|Q[f]\|
$$

we have

$$
\begin{gather*}
\|R\|_{s+1} \leqslant \frac{\delta_{n}}{\delta_{n+1}} \frac{1}{s+1}\left\|q_{n+1}(x) C_{n}-q_{n}(x) C_{n+1}\right\|_{s} \tag{4}\\
C_{r}|g|=\int_{1}^{1} g(t) q_{r}(t) d \alpha(t)
\end{gather*}
$$

As a consequence of the symmetry assumption (i) we have

$$
\begin{aligned}
\left|q_{n+1}(1) C_{n}\right| g\left|-q_{n}(1) C_{n+1}\right| g \mid & =\left|q_{n+1}(1) C_{n}\right| \bar{g}\left|+q_{n}(1) C_{n-1}\right| \bar{g} \mid \\
\bar{g}(x) & =g(-x) .
\end{aligned}
$$

and we conclude

$$
\left\|q_{n+1}(1) C_{n}-q_{n}(1) C_{n+1}\right\|_{s}=\left\|q_{n, 1}(1) C_{n}+q_{n}(1) C_{n, i}\right\|_{i}
$$

Hence, from (4) and the lemma

$$
\begin{equation*}
\|R\|_{s+1} \leqslant \frac{\delta_{n}}{\delta_{n+1}} \frac{1}{s+1}\left\|q_{n-1}(1) C_{n}-q_{n}(1) C_{n-1}\right\|_{1} . \tag{5}
\end{equation*}
$$

$s=0,1, \ldots, n$. The polynomial $q_{n+1}(1) q_{n}-q_{n}(1) q_{n+1}$ has the zero 1 and n further zeros $\eta_{t} \in|-1,1|$ (Szegö $\mid 7$, p. 45|). Let intpol $|g|$ be the interpolation polynomial for g with respect to the knots $\eta_{r}(v=1 \ldots . . n)$. Using

$$
g(t)-\text { intpol }|g|(t)=\prod_{r-1}^{n}\left(t-\eta_{r}\right) \frac{g^{(n)}(\xi)}{n!}, \quad \xi \in|-1,1| .
$$

and the orthogonality, we have that

$$
\begin{aligned}
q_{n+1}(1) & C_{n}|g|-q_{n}(1) C_{n+1}|g| \\
& =\int_{-1}^{1} g(t)\left|q_{n+1}(1) q_{n}(t)-q_{n}(1) q_{n+1}(t)\right| d \alpha(t) \\
& =\int_{-1}^{1}|g(t)-\operatorname{intpol}| g|(t)||\cdots| d \alpha(t) \\
& =\frac{g^{(n)}\left(\xi_{1}\right)}{n!} \int_{-1}^{1} \prod_{v=1}^{n}\left(t-\eta_{r}\right)|\cdots| d \alpha(t) \\
& =\left.\frac{g^{(n)}\left(\xi_{1}\right)}{n!} q_{n+1}(1)\right|_{-1} ^{1} \prod_{n=1}^{n}\left(t-\eta_{t}\right) q_{n}(t) d \alpha(t) \\
& =\frac{g^{(n)}\left(\xi_{1}\right)}{n!} \frac{q_{n+1}(1)}{\delta_{n}} .
\end{aligned}
$$

This implies

$$
\left\|q_{n+1}(1) C_{n}-q_{n}(1) C_{n+1}\right\|_{n}=\frac{q_{n+1}(1)}{n!\delta_{n}}
$$

Combining this equality with (5) concludes the proof.

References

1. H. Brass, Approximation durch Teilsummen von Orthogonalpolynomreihen, in "Numerical Methods of Approximation Theory, Vol. 5" (L. Collatz et al., Eds.), pp. 69-83, Internat. Ser. Numer. Math. Vol. 52, Birkhäuser, Basel, 1980.
2. H. Brass and G. Schmeisser, Error estimates for interpolatory quadrature formulae, Numer. Math. 37 (1981), 371-386.
3. S. Lewanowicz, Some polynomial projections with finite carrier, J. Approx. Theory 34 (1982), 249-263.
4. G. Meinardus, "Approximation of Functions: Theory and Numerical Methods," SpringerVerlag, New York/Berlin, 1967.
5. G. M. Phillips and P. J. Taylor, Polynomial approximation using equioscillation on the extreme points of Chebyshev polynomials, J. Approx. Theory 36 (1982), 257-264.
6. Th. J. Rivlin, "The Chebyshev Polynomials," Wiley, New York, 1974.
7. G. Szegö, "Orthogonal Polynomials," Amer. Math. Soc., Providence, R.I., 1939.
